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A B S T R A C T

We describe the difficulties of measuring variability in performance, a critical but largely ignored problem in 
studies of risk perception. The problem seems intractable if a large number of successful and unsuccessful trials 
are infeasible. We offer a solution based on estimates of task-specific variability pooled across the sample. Using a 
dataset of adult performance in throwing and walking tasks, we show that mischaracterizing the slope leads to 
unacceptably large errors in estimates of performance levels that undermine analyses of risk perception. We 
introduce a “pooled-slope” solution that approximates estimates of individual variability in performance and 
outperforms arbitrary assumptions about performance variability within and across tasks. We discuss the ad-
vantages of objectively measuring performance based on the rate of successful attempts—modeled via psycho-
metric functions—for improving comparisons of risk across participants, tasks, and studies.

1. Introduction

Risk perception is critical for action planning across the lifespan—a 
baby deciding whether to step off the couch, a teen deciding when to 
cross a busy street, or an elderly person deciding if they can walk over 
slanting ground. But how do you know if an action is safe or risky, easy 
or difficult? Actors—like the researchers observing them—estimate risk 
based on the likelihood of successful performance combined with the 
penalty for errors (versus rewards for success). This paper focuses on 
how the likelihood of successful versus failed performance relates to 
risk: The lower the probability of success, the greater the difficulty and 
potential risk. Because bodies and skills vary widely, motor performance 
varies widely—even among people of the same age performing the same 
task (Franchak, 2019; Ishak et al., 2014; O'Neal et al., 2016; Warren & 
Whang, 1987; Wilmut & Barnett, 2011). Thus, researchers must measure 
performance for each participant rather than assume it a priori. That is, 
to denote people's decisions as “accurate,” “cautious,” “reckless,” and so 
on, researchers must know the likelihood of success for a particular 
person attempting a particular action.

1.1. A psychophysical approach to motor performance

Optimally, researchers parametrically vary environmental units to 
determine the actual success level for each participant in each task (e.g., 
smaller to larger couch heights for each baby, slower to faster traffic 

flows for each teen, shallower to steeper slants for each elderly person). 
A psychophysical approach to modeling motor performance facilitates 
comparisons across parametric task variations because it reduces per-
formance over repeated trials to two parameters. The threshold param-
eter reflects the environmental unit where the likelihood of success is 50 
%. And the slope parameter reflects performance variability—that is, 
how rapidly the likelihood of success decreases from ~100 % (nearly 
always safe) to ~0 % (nearly always risky) with change in environ-
mental units (Franchak, Adolph, 2014a).

Fig. 1A and B show examples of two infants' attempts to walk over 
bridges varying in width. Of course, narrower bridges were riskier 
(babies were more likely to fall) and wider bridges were safer (babies 
were more likely to succeed). The psychometric functions quantify the 
likelihood of success across all possible environmental units by speci-
fying the bridge widths where each infant's success rate approached 0 % 
and 100 %. Thus, the difference in thresholds for baby A (16.8 cm) and 
baby B (22.0 cm) shows that baby A could walk over narrower bridges 
than baby B, meaning that a 22 cm bridge was more difficult for baby B 
than for baby A.

However, motor performance is a continuous measure such that each 
bridge width (including interpolated widths that were not tested) is 
associated with its own likelihood of success for each participant. The 
larger slope (flatter curve) for baby A reflects more gradual change in 
the likelihood of success across bridge widths, and the smaller slope 
(steeper curve) for baby B reflects more rapid changes in the likelihood 
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of success. These differences in performance variability mean that the 
more variable baby A achieved 75 % success at 2.1 cm larger than their 
threshold, whereas the more consistent infant B achieved 75 % success 
at only 0.2 cm larger than their threshold. Thus, accurate estimation of 
motor performance (and by extension, risk level) across parametric 
variations in a task requires robust estimates of both the threshold and 
the slope.

1.2. The importance of accurate estimates of performance variability for 
comparing risk across tasks, people, and sessions

Researchers—like everyone else—frequently make crude, a priori 
assumptions about risk. Walking over a wider bridge is safer than 
walking over a narrow one (Kretch, Adolph, 2013b), descending from a 
high platform is safer than stepping over a low drop-off (Kretch, Adolph, 
2013a), walking through a wide doorway is safer than squeezing 
through a narrow one (Comalli et al., 2013; Franchak, 2019, 2020; 
Franchak, Adolph, 2014b; Wilmut & Barnett, 2011), crossing a street is 
safer when the time gap between cars is longer (O'Neal et al., 2016; 
Plumert et al., 2007), and so on. Albeit true, such simple a priori as-
sumptions about relative difficulty (narrower bridges and doorways are 
generally more difficult than wider bridges and doorways, etc.) is not 
the same thing as quantifying the likelihood of success. The latter re-
quires empirical measurement of motor performance.

To quantify performance, researchers frequently compare people's 
abilities based on psychophysical estimates of their thresholds. For 
example, some 14-month-old babies can safely walk over a 12-cm wide 
bridge, whereas other 14-month-olds display thresholds of 30 cm 
(Kretch, Adolph, 2013b). Some 18-month-olds can safely walk down 28- 
cm high drop-offs, whereas other 18-month-olds display thresholds of 2 
cm (Karasik et al., 2016; Kretch, Adolph, 2013a). Some 18-month-olds 
can walk down 40◦ ramps, whereas other 18-month-olds display 
thresholds of 12◦ (Tamis-LeMonda et al., 2008). Individual differences 
in participants' abilities within a task mean that participants have 
different likelihoods of success given the same environmental challenge.

However, environmental units like bridge widths, drop-off heights, 
and ramp degrees vary continuously meaning motor performance also 
varies continuously. A common strategy for comparing performance at 
multiple environmental units is to center each participant's data around 
their threshold and then compare performance at units smaller or larger 
than the threshold (Adolph, 1995; Franchak & Adolph, 2012; Kretch, 
Adolph, 2013a, 2013b; Plumert, 1995). However, this strategy lacks 
precision if individual slope estimates differ, as in infants A and B in 

Fig. 1. In other words, bridge widths 5 cm narrower than threshold, 
drop-offs 5 cm higher than threshold, and ramps 5◦ steeper than 
threshold entail very different difficulties for participants with flatter or 
steeper psychometric functions. Thus, to compare performance across 
units relative to threshold, researchers require accurate slope estimates.

Moreover, when environmental units differ across tasks (as in cen-
timeters of bridge width versus degrees of slant) or hold different 
functional meanings (as in centimeters of bridge width versus centi-
meters of drop-off height), cross-task comparisons are so compromised 
as to be nearly meaningless. That is, there is no reason to assume that 
walking over a bridge 5 cm narrower than threshold is just as difficult as 
walking down a ramp 5◦ steeper than threshold or even over a drop-off 
5 cm higher than threshold. Cross-task comparisons would be feasible if 
performance were equated based on a unit-less metric such as standard 
deviations from threshold (like a Z-score). However, as in within-task 
comparisons of performance, cross-task comparisons using such a unit- 
less metric require accurate slope estimates.

1.3. Challenges in estimating performance variability

A well-known maxim in psychophysics is that estimating a slope 
parameter is more challenging than estimating a threshold parameter 
(Wichmann, Hill, 2001a, 2001b). The challenge arises for several related 
reasons. First and foremost, slope estimates require more trials than 
threshold estimates because the same threshold can result from an 
infinite number of slopes (imagine a family of psychometric functions 
centered around a single threshold). And the more variable the perfor-
mance, the more trials are needed per participant. Because thresholds 
vary widely among individuals, researchers use adaptive methods, such 
as staircase procedures (Cornsweet, 1962; Kingdom & Prins, 2010), to 
minimize the number of trials to estimate threshold and to place trials 
where they will be maximally informative (Franchak, Adolph, 2014a). 
The more trials needed to estimate the threshold, the fewer trials are left 
to fine-tune the slope estimate. Thus, some studies in visual psycho-
physics collect hundreds or thousands of trials per participant per task to 
ensure robust slope estimates (e.g., Strother & Kubovy, 2006).

Second, each trial comes at a cost. Immense numbers of trials are 
feasible in psychophysical studies of adult visual perception, where each 
trial lasts only a few seconds and a seated observer responds with a mere 
button press. But not so for many studies of motor action. Walking 
through doorways (Franchak, 2020; Franchak, Adolph, 2014b; Wagman 
& Malek, 2007; Yasuda et al., 2014) or stepping over barriers (Comalli 
et al., 2017; Snapp-Childs & Bingham, 2009) require more effort and 
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Fig. 1. Examples of psychometric functions for data from three infants walking over bridges in Kretch and Adolph (2013b). Each graph shows the percentage of 
successful trials (y-axis) at various bridge widths (x-axis). Symbol size is scaled to the number of trials collected at each bridge width. Gray lines are the individual 
psychometric functions. (A) Good curve fit with relatively large slope (flatter function). (B) Good curve fit with relatively smaller slope (steeper function). Red 
reference lines show the thresholds (environmental unit with 50 % success rate). Difference between thresholds and 75 % success rate illustrate that performance 
depends on the size of each infant's slope. When the slope is large as in (A), the difference is 2.1 cm, but when the slope is small as in (B), the difference is only 0.2 cm. 
(C) Dataset with only a single failure leading to an uncertain slope—both smaller (i.e., black line) and larger (i.e., gray dashed line) slope estimates are possible fits to 
the data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

J.M. Franchak et al.                                                                                                                                                                                                                            



Acta Psychologica 253 (2025) 104703

3

time than a button press. And trials are even more costly in tasks like 
swinging on monkey bars (Cole et al., 2013), leaping over gaps (Day 
et al., 2015), and climbing up rock walls (Hacques et al., 2021). The cost 
per trial is exaggerated in infants and children, who become fussy and 
noncompliant, requiring many easy trials to stay motivated. And the cost 
is greater for participants who tire quickly, such as infants and elderly 
people. The higher the cost, the fewer trials can be collected in total.

Third, trials must be informative to fit the psychometric function. 
That is, each participant must contribute both successful and unsuc-
cessful trials along the inflection of the curve. Trials far on the tails of the 
curve are less informative because researchers can assume ~100 % 
success on easy trials such as a 100-cm wide bridge, 0-cm high drop-off, 
or a 0◦ slope and they can assume ~0 % success for a 1-cm wide bridge, 
200-cm high drop-off, and 70◦ ramp. Collecting data along the inflection 
of the curve is more informative, but only if there are enough trials to 
accurately estimate the performance level. With only 1 trial, the 
outcome can be either 0 % or 100 %, with 2 trials, the outcome can be 0 
%, 50 %, or 100 %, and so on. With many trials at a unit, it is possible to 
precisely measure how small variations in an environmental unit result 
in subtle differences in performance. In some cases, the researcher can 
present multiple trials at a unit and ask participants to attempt each one 
(Franchak, 2017; Hospodar et al., 2023; Labinger et al., 2018).

However, in many cases, eliciting multiple attempts at a difficult 
environmental unit is not possible due to participant compliance or 
safety. For example, elderly adults were reluctant to fall from a narrow 
ledge, despite the presence of a spotter, so participants refused to 
attempt to walk over ledges where they thought they would fall-
—resulting in many successes and few or no failures (Comalli et al., 
2013). Babies become frustrated when attempting difficult or impossible 
increments such as walking over narrow bridges (Fig. 1), down steep 
ramps, over high drop-offs, or under low barriers, resulting in too few 
trials at difficult performance levels, and some babies never attempt 
increments where they will fail (Franchak & Adolph, 2012; Kretch, 
Adolph, 2013a; Rachwani et al., 2022; Tamis-LeMonda et al., 2008). The 
consequence of insufficient numbers of unsuccessful trials are poor 
psychometric fits that mischaracterize the variability. Fig. 1C shows an 
example where the baby contributed only one unsuccessful tri-
al—leading to an uncertain estimate of the slope that may not charac-
terize the infant's true performance variability. Both the smaller (black 
line) and larger slope (dashed gray line) are potential fits, but more data 
would be needed to differentiate the possibilities. As a consequence, lack 
of trials at difficult risk levels makes it challenging to estimate the slope.

1.4. Current study

We present a new psychophysical method for estimating perfor-
mance variability that meets the challenges inherent in comparing 
physical risk across tasks with different units or functional meanings, 
across participants with different performance variability due to skill 
differences, and across sessions with different performance variability 
due to learning or development. We tested the effectiveness of our 
method for dealing with the additional problems introduced by small 
numbers of imbalanced trials as is typical in studies with infants, chil-
dren, and elderly adults or in tasks where motor performance is espe-
cially costly.

We used an existing dataset of adults throwing a beanbag through 
doorways and walking sideways through doorways of varying widths 
(Hospodar et al., 2023). Although doorway width was measured in the 
same units (cm) in both tasks, throwing a beanbag and walking through 
doorways have different functional meanings in terms of difficulty and 
risk. Thus, comparisons across tasks should be based on performance 
level in % success rather than absolute environmental units, but this 
would require accurate estimates of the slope. Critically, each partici-
pant contributed a relatively large number of trials (75 per task) with 
multiple trials at easy and difficult environmental units. Thus, we 
treated the individual fits to each participant's 75 trials of data as the 

“ground truth” estimates for performance variability in each task. We 
then tested how alternative estimates of performance variability 
compare to the ground truth estimates. Based on individual slope esti-
mates from psychometric functions fit through each participant's data in 
each task, the prior work revealed differences in performance variability 
across participants within each task, and showed that performance 
variability across participants was greater for throwing compared with 
walking.

The throwing/walking dataset was ideally suited to address four 
related aims. First, we tested whether differences in performance vari-
ability lead to differences in the robustness of slope estimates. More 
trials are needed to estimate the slope of a psychometric function when 
variability is larger (curve is flatter) than when it is smaller (curve is 
steeper). Thus, we compared the size of the confidence intervals around 
slope estimates in the throwing task to the confidence intervals in the 
walking task while keeping the number of trials constant across tasks. 
We predicted larger confidence intervals (indicating inconsistent slope 
estimates) for throwing than for walking.

Second, we tested the consequences of misrepresenting performance 
variability (slope estimates), an issue that arises when researchers as-
sume risk level a priori rather than measure it empirically. Thus, we 
calculated a new metric, a “performance estimation error score,” that 
reveals errors in performance estimation (estimated % success) at every 
point along the psychometric function. Specifically, we compared the 
ground truth slope estimates (based on individual participant fits using 
all 75 trials) in the throwing and walking tasks with the misrepresented 
slope estimates researchers would obtain if they assumed identical 
performance variability across the two tasks—as is typical in risk- 
perception research (e.g., Franchak, 2020; Franchak et al., 2012; Plu-
mert, 1995; Yasuda et al., 2014). We predicted that misrepresented 
slopes would lead to unacceptably large performance estimation error 
scores.

Third, we tested whether data pooled across participants in a task 
can replace individual estimates of performance variability in studies 
where participants cannot contribute a sufficient number of trials to 
estimate individual slopes. Thus, we calculated a “pooled slope” esti-
mate for each task by normalizing each participant's data to their 
threshold and then fitting a psychometric function to the pooled data. 
We compared the pooled slope to the individual ground truth slope es-
timates and to the misrepresented slope estimates. We predicted that the 
pooled slope provides acceptable estimates of performance for most 
individual participants.

Finally, we tested whether the pooled slope is robust for use with 
datasets where participants contribute only a small number of imbal-
anced trials, as is common in studies with participants who are loath to 
fail (e.g., infants, children, and elderly adults). Thus, we simulated such 
cases by “degrading” the original data to varying degrees to approximate 
small, imbalanced datasets that lack data at difficult environmental 
units. Then we compared the performance estimation error (relative to 
ground-truth risk estimates) in individual fits versus the pooled slope for 
degraded datasets. We predicted that the pooled slope would provide 
performance estimation errors less than or equal to errors from indi-
vidual slope estimates when fitting psychometric functions under the 
degraded conditions.

2. Method

All analyses in this paper were based on a dataset openly shared on 
Databrary (databrary.org/volume/1448) and described in Hospodar 
et al. (2023). The processed data and code to reproduce our analyses are 
available on OSF (DOI: 10.17605/OSF.IO/WNCBK).

2.1. Procedure for throwing/walking dataset

Thirty participants (18 women, 12 men) aged M = 25.7 years 
participated in the throwing and walking tasks. Each participant 
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contributed 75 trials to each task, split approximately evenly between 
successful and unsuccessful trials, with trials blocked between the two 
tasks and task order counterbalanced. Participants stood 1.5 m from a 
doorway that could be adjusted in width from 0 to 74 cm. On each trial, 
doorway width was determined by an adaptive psychophysical pro-
cedure, where width was increased or decreased depending on the 
participant's success on the previous trial. The procedure was tailored to 
individual participant's responses so as to minimize the total number of 
trials while placing trials along the inflection of the psychometric 
function to be maximally informative.

The edges of the doorway were lined with small bells that jingled if 
touched. In the throwing task, participants attempted to throw a 
beanbag through the doorway without the beanbag touching the edges 
of the doorway. On successful throws, the beanbag passed through the 
doorway without ringing the bells. In the walking task, participants 
attempted to walk sideways through the doorway without touching the 
sides of the doorway. On successful walks, the participant passed 
through the doorway without ringing the bells.

2.2. Individual threshold and slope estimates in the throwing/walking 
dataset

Using the quickpsy package in R (Linares & López-Moliner, 2016), 
Hospodar et al. (2023) fit cumulative normal psychometric functions to 
the success rates for each participant in each task by estimating pa-
rameters for the threshold and the slope. Here, we treated the individual 
psychometric functions as the “ground truth” dataset because they 
contained a sufficient number of trials (75) to robustly estimate the 
threshold and slope for each participant. For each participant and task, 
Hospodar et al. (2023) calculated the success rate as the percent of 
successful attempts at each doorway width. The success rate estimates 
the performance level for that participant for a particular doorway 
width—a success rate of 0 % indicates the action is impossibly difficult 
and thus riskier, whereas a success rate of 100 % indicates the action is a 
“sure thing” and thus safer. Each symbol in Fig. 2A shows the success 
rate for walking (in blue) and throwing (in orange) for each participant. 
The solid lines in Fig. 2A show the psychometric functions, the white 
squares show the threshold estimates (the doorway width where likeli-
hood of success was 50 %), and the flatness or steepness of the curves 
show the slope estimates (the change in likelihood of success with each 
change in doorway width relative to threshold). Thus, thresholds denote 
the doorway width where the likelihood of success is 50 %, whereas 
slopes denote how rapidly performance changes for doorways smaller or 
larger than threshold.

Overall, thresholds for throwing ranged from 14.2 cm to 27.1 cm (M 
= 19.2), and thresholds for walking ranged from 29.4 cm to 39.5 cm (M 
= 34.3). That is, participants could throw beanbags through much 
narrower doorways than they could walk through, but thresholds varied 
widely within tasks based on participants' body size and throwing 
ability. Overall, slopes for throwing ranged from 4.0 cm to 20.9 cm (M =
7.64 cm), and slopes for walking ranged from 0.27 cm to 7.56 cm (M =
2.08 cm). That is, performance changed rapidly around the threshold for 
the walking task, but performance varied more gradually around the 
threshold for the throwing task because throwing was less consistently 
successful. Note that slope estimates of a cumulative Gaussian function 
are in the same units as the threshold (in this case, centimeters).

3. Results

We report four related sets of results. First, we show that task-specific 
differences in performance variability lead to differences in the robust-
ness of slope estimates. Second, we show that misrepresentation of 
performance variability leads to large errors in performance estimation 
within tasks. Third, we show that pooled slopes provide an acceptable 
estimate of performance level when used in place of individual psy-
chometric functions. Finally, we show that pooled slopes more 

accurately estimate performance compared with individual slope esti-
mates when the total number of trials or number of unsuccessful trials is 
small.

3.1. Task-specific differences in performance variability lead to 
differences in accuracy of slope estimates

With the throwing/walking dataset, we empirically demonstrated a 
well-known problem in psychophysics—that more trials are needed to 
estimate the slope when variability is larger (as in throwing) compared 
to when it is smaller (as in walking). We conducted 1000 parametric 
bootstraps for each participant's data in each task and then refit the 
psychometric functions to derive 95 % confidence intervals for the slope 
estimates. Small confidence intervals denote robust slope estimates 
across parametric variations in the data whereas large confidence in-
tervals indicate inconsistent slope estimates.

Fig. 2B shows the size of the 95 % confidence intervals for the slope 
estimate for each participant, ordered by the size of the confidence in-
tervals for the throwing task. One participant's (#9) slope in the 
throwing task could not be reliably estimated in the majority of simu-
lations and so was omitted. Greater variability in the throwing task 
resulted in larger confidence intervals for throwing (M = 5.22 cm) 
compared with walking (M = 1.03 cm) even though each task had the 
same number of trials. The problem of large confidence intervals (hence, 
poor slope estimates) is compounded in cases where fewer trials are 
available, as we describe in the final section of the results.

Fig. 2. Data from the throwing/walking task in Hospodar et al. (2023). (A) 
Individual psychometric functions fit to each participant's data in the throwing 
(orange) and walking (blue) tasks. Symbols show the percent of successful trials 
(y-axis) at each doorway width (x-axis). White squares indicate the threshold 
estimates. (B) Relation between performance variability and robustness of slope 
estimates. Each bar indicates the size of the 95 % confidence interval for the 
slope parameter for each participant in each task calculated from bootstrap 
resampling. Confidence intervals were larger (worse) for throwing compared to 
walking. Points to the right of the bar graphs indicate group-level means with 
±1 SE error bars. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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3.2. Misrepresented performance variability leads to large errors in 
estimates of performance level

Accurate estimates of performance variability—slope parameter-
s—are critical to characterize the likelihood of success. So we tested the 
consequences of misrepresenting performance variability as occurs 
when researchers assume equal variability across tasks. (Note, the same 
consequences arise if researchers assume that variability is constant 
across people or across sessions, or if researchers do not measure vari-
ability at all.) Thus, to test the accuracy of performance estimates when 
assuming that the variability of one task is equal to that of another, we 
swapped slope estimates for throwing and walking, where differences in 
performance variability were large.

Fig. 3A-B illustrates the consequences of misrepresenting perfor-
mance variability for one participant (#4 in Fig. 2A). The participant's 
ground-truth slopes (in gold) show the success rate for doorways larger 
and smaller than the participant's throwing and walking thresholds. The 
“swapped slope” estimate (in purple) for the throwing task (Fig. 3A) was 
the ground-truth slope for the walking task, and vice versa for the 

walking task. We calculated a “performance estimation error” to quan-
tify the size of the deviations (in performance-level units of % success) 
between the true success rate in the ground-truth slope model and the 
success rate in the swapped-slope model. The deviations from the 
swapped-slope model (vertical purple lines) to the ground-truth slope 
model show the size of the errors in estimating performance at a few 
exemplar units (1, 3, and 5 cm larger than threshold). The longer the 
line, the larger the error.

Fig. 3C shows the range in performance estimation errors for each 
participant (thin purple lines) across doorway widths. Because the cu-
mulative normal psychometric function is symmetrical around the 
threshold, the figure shows only positive values up to 5 cm larger than 
threshold. Exemplar participant #4 is shown in Fig. 3C with a thick 
purple line; circles indicate the example points at 1, 3, and 5 cm from 
Fig. 3A-B. Although a few participants had similar slopes for the two 
tasks (and thus small performance estimation errors when the slopes 
were swapped), most did not. The average performance estimation er-
rors (thick black lines) are identical for throwing and walking because 
the slopes were swapped between tasks. The average performance 
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Fig. 3. Performance estimation error (calculated as the absolute difference in percent success compared to ground truth estimates). (A) Throwing and (B) walking. 
One participant's (#4) percent success (y-axis) at different cm from threshold (x-axis) for the ground truth psychometric function (gold line), the swapped slope 
psychometric function (purple line), and the pooled slope psychometric function (teal line). The length of the dashed lines in (A) and (B) at 1, 3, and 5 cm show 
examples of performance estimation error for swapped slopes and pooled slopes. In each case, performance estimation error was larger for swapped slopes than for 
pooled slopes. (C) Each participant's performance estimation error for throwing and walking for the swapped slope estimates (thin purple lines). (D) Each partic-
ipant's performance estimation error for throwing and walking for the pooled slope estimates (thin teal lines). White circles and thick purple or teal lines denote the 
performance estimation error from exemplar participant #4 in (A) and (B). Black lines indicate the mean performance estimation error across participants. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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estimation error was smallest at 0.5 cm from threshold (10.5 % error) 
and largest at 2.5 cm from threshold (26.1 %). Thus, a large error in 
misrepresenting the slope parameter results in large errors in estima-
tions of participants' performance levels at units smaller and larger than 
threshold.

3.3. Pooled slopes provide acceptable estimates of performance level

Robust estimates of the slope are precluded when performance 
variability is large and/or the total number of trials or number of un-
successful trials are small. Thus, we present a new procedure to estimate 
a “pooled slope” for each task, and we tested whether the pooled slope 
estimate can be used in lieu of individual slope estimates.

The pooled slope combines data across participants in a task. How-
ever, because participants had a wide range of thresholds for walking 
and throwing (Fig. 2A), as is typical in many motor tasks, we first 
centered each participant's environmental units (doorway width) to 
their thresholds. Note, threshold estimates based on a smaller number of 
trials are often robust even when slope estimates are not (Wichmann, 
Hill, 2001a). Thus, we centered each participant's data by subtracting 
their threshold from each doorway width such that 0 on the x-axis of 
Fig. 4A denotes success rate at threshold (50 %). Values smaller than 
0 denote increasingly risky doorway widths with a lower likelihood of 
success; values larger than 0 indicate increasingly safe doorway widths 
with a higher likelihood of success. With each participant's data centered 
to a common performance scale, we pooled data across participants in 

each task. The symbol size in Fig. 4A denotes the number of trials at each 
unit pooled across participants. The adaptive procedure used to choose 
doorway widths resulted in more frequent trials near threshold 
compared with trials at units more distant from threshold.

Next, we fit a psychometric function to the pooled data for each task. 
As with individual psychometric functions, we fit a cumulative normal 
psychometric function by estimating the threshold and slope using the 
quickpsy package (Linares & López-Moliner, 2016). The solid lines in 
Fig. 4A show the pooled psychometric functions for each task. The 
resulting pooled slopes (7.6 cm for the throwing task and 2.4 cm for the 
walking task) can now be considered as a replacement for individual 
slope estimates. Fig. 4B-C visualizes the goodness of fit by plotting 
ground-truth individual slope psychometric functions against the pooled 
slope psychometric functions.

As with the swapped-slope estimates, we calculated performance 
estimation errors for the pooled slope estimates. Fig. 3A-B shows the 
performance estimation error for throwing and walking for the pooled 
slope (in teal) relative to exemplar participant #4's individual ground- 
truth slope estimates (in gold). The vertical teal lines show the size of 
the performance estimation error at 1, 3, and 5 cm. Each line is shorter 
for the pooled slope compared with the swapped-slope estimate, indi-
cating that the pooled slope is a better estimate. That is, pooled-slope 
estimates of performance were closer to ground truth compared with 
swapped slope estimates.

Fig. 3D shows the performance estimation error from pooled slope 
estimates for each participant in each task. Compared to the swapped 
slopes in Fig. 3C, the average performance estimation errors for pooled 
slope estimates were less severe (thick black lines). For throwing, the 
mean pooled slope errors were smallest at 0.5 cm from threshold (0.9 %) 
and largest at 5 cm from threshold (6.1 %). For walking, the mean 
pooled slope errors were smallest at 5 cm from threshold (3.4 %) and 
largest at 2 cm from threshold (10.5 %). Put differently, the largest 
averaged error from pooled slope estimates was equal to the smallest 
averaged error from misrepresenting the slope (10.5 %), showing that 
pooled slope estimates are preferable to arbitrary slope estimates.

The pooled slope procedure provides a good estimate because each 
participant's data is centered to a common performance scale (cm rela-
tive to threshold) before data are pooled. To illustrate the advantage of 
centering the data, we created an “uncentered aggregate” for each task 
by simply calculating the percent of successful trials at each environ-
mental unit across participants. Supplemental Fig. 1A shows the 
resulting fits when data are aggregated without centering data to a 
common performance scale. Because participants have varying thresh-
olds in each task, the simple aggregate fits in Supplemental Fig. 1A result 
in much larger estimates of performance variability—a slope of 12.2 cm 
for the throwing task (compared with a pooled slope of 7.6 cm) and a 
slope of 4.5 cm for the walking task (compared with a pooled slope of 
2.4 cm). This overestimation happens because between-participant 
variability in thresholds is (erroneously) being counted in the estimate 
of within-participant performance variability. As expected, performance 
estimation errors for the uncentered aggregate fits were larger compared 
to those for the pooled slope procedure (Supplemental Fig. 1B). Across 
performance levels ±5 cm from threshold, performance estimation er-
rors for the uncentered aggregate fits averaged M = 20.6 % for the 
throwing task and M = 12.5 % for the walking task. In contrast, pooled 
slopes performance estimation errors averaged only M = 7.4 % for the 
throwing task and M = 3.6 % for the walking task across the same 
performance levels.

3.4. Pooled slopes provide better estimates of performance than individual 
slope estimates for small numbers of imbalanced trials

Although individual slope estimates are preferable given sufficient 
data, many test situations allow only a small number of trials and/or a 
small number of unsuccessful trials. In particular, infants, children, and 
elderly people can tolerate only a small number of trials and they 

Fig. 4. Pooled slopes for each task. (A) Each participant's data were centered 
based on their individual thresholds for each task and then rounded to integer 
units. Each symbol reflects the percent of successful trials in the pooled data 
after pooling across participants; symbol size was scaled to the number of trials. 
A single psychometric function in each condition yielded a pooled slope used in 
subsequent analyses. (B) Pooled slopes (orange and blue curves) relative to each 
participant's psychometric function for throwing and walking (gray curves). 
Participants' data were ordered from smallest to largest ground truth slope 
parameter (i.e., gray curves). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)
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sometimes refuse to attempt actions where they will be unsuccessful 
such as walking over impossibly narrow bridges (Kretch, Adolph, 
2013b) or over impossibly narrow ledges (Comalli et al., 2013). Even 
with healthy, young, compliant adults, some tasks (e.g., arm-leaping on 
monkey bars), are so arduous or costly that only a small number of trials 
with a small number of unsuccessful trials are possible (Cole et al., 
2013). Thus, we tested whether the pooled slope can provide more ac-
curate estimates than individual slope estimates.

We created infant-inspired datasets by degrading the throwing/ 
walking data in a series of simulations. For each participant in each task, 
we randomly selected 20 of their 75 trials under three conditions of 
imbalance: 15 successful and 5 unsuccessful trials, 17 successful and 3 
unsuccessful trials, and 19 successful and 1 unsuccessful trial. Hence, we 
kept the total number of trials constant (20) but varied the number of 
unsuccessful trials. For each participant, task, and imbalanced-trial 
condition, we simulated 1000 datasets.

For each simulated dataset, we compared the performance estima-
tion errors of individual slope estimates compared with curves that used 
pooled slope estimates with individual threshold fits. Fig. 5 shows the 
average performance estimation error across simulations and partici-
pants for each method (individual slopes in brown, pooled slopes in 
teal). We used 95 % confidence intervals to compare which estimate was 
most accurate. For example, at 0.5 cm from threshold in the walking task 
in Fig. 5 (leftmost highlighted points), the performance estimation error 
was 24.5 % for individual slopes compared with 16.0 % for pooled slope 
estimates and the 95 % confidence intervals did not overlap. The high-
lighting shows cases where the pooled slope estimate outperformed the 
individual slope estimate (non-overlapping confidence intervals where 
the pooled slope model had smaller errors than the individual slope 
model) and unshaded areas show where the confidence intervals 
overlapped.

Individual slope estimates never outperformed pooled slope esti-
mates (confidence intervals always overlapped when performance esti-
mation error was lower for individual slopes compared to pooled slope 
estimates). The pooled slope estimates were most effective in reducing 
performance estimation errors in the more variable throwing task for 
performance levels close to threshold when there were only 3 or 1 un-
successful trials (Fig. 5). The pooled slope estimates were comparable to 
individual slope estimates for most performance levels in the walking 
task regardless of the number of unsuccessful trials, and for the 

simulations with 5 unsuccessful trials in the throwing task (Fig. 5).

4. Discussion

Using an existing dataset from Hospodar et al. (2023), we showed 
that performance variability critically influences physical risk because of 
its influence on the likelihood of successful action. We described a 
psychophysical procedure to accurately measure performance vari-
ability. Hospodar et al. (2023) found that variability of throwing 
beanbags through doorways exceeded variability for walking through 
doorways. Consequently, we found here that slope parameter estimates 
for the more variable throwing task were less robust given the same, 
relatively large number of trials (75) as the less variable walking task.

Most importantly, we presented a new “pooled slope” procedure that 
aggregates data across participants in a task. The pooled slope provides 
acceptable estimates of performance variability (relative to ground 
truth), whereas a priori assumptions about performance variability (e.g., 
that two tasks are equally variable) can lead to gross mischaracterization 
of risk levels. Pooled slopes better approximate performance variability 
compared to using uncentered, aggregate data (i.e., success rates at each 
absolute environmental unit calculated across participants). Moreover, 
the pooled slope procedure mitigates the pitfalls of estimating slope 
parameters in datasets with too few trials. Pooled slope estimates also 
outperform individual slope estimates when analyzing datasets that 
contain only a few unsuccessful trials, such as when studying perfor-
mance in infants and elderly people (e.g., Comalli et al., 2013; Kretch, 
Adolph, 2013a).

4.1. From motor performance to risk perception

Of note, the current results focused exclusively on motor perform-
ance—whether participants successfully or unsuccessfully performed 
the target action—rather than on perceptual judgments. However, we 
argue that researchers must objectively measure performance to study 
risk perception—that is, whether participants accurately perceive ac-
tions as safe or risky where the likelihood of success is known. Imagine 
the difficulty of studying luminance perception without being able to 
manipulate or measure the actual luminance of different stimuli! In such 
a case, results could not be compared across tasks, participants, or 
sessions.

Fig. 5. Performance estimation errors for pooled slopes and ground-truth estimates in infant-inspired datasets with a small number of trials and unsuccessful trials. 
Average performance estimation error of individual fits to degraded data (brown points) compared with pooled-slope estimations (teal points) with 95 % confidence 
intervals. Each panel shows a different degraded dataset pulling n = 20 random trials from each participant's data in each task: 15 successful and 5 unsuccessful trials 
(left), 17 successful and 3 unsuccessful trials (center), and 19 successful and 1 unsuccessful trial (right). Yellow shading denotes cases where the pooled slope 
outperformed individual psychometric functions (non-overlapping confidence intervals). In every non-shaded case, the pooled slope was comparable to individual 
psychometric functions (overlapping confidence intervals). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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Studies of risk perception typically manipulate a single environ-
mental dimension that presumably increases or decreases risk: Narrower 
doorways increase the risk of entrapment, steeper ramps increase the 
risk of falling, faster traffic flows increase the risk of collision, and so on 
(Adolph, 1995; Franchak, 2019; Franchak & Adolph, 2012; O'Neal et al., 
2016; Plumert et al., 2007; Tamis-LeMonda et al., 2008). However, 
possibilities for action depend on the fit between actor and environment 
(Gibson, 1979; Warren, 1984; Warren & Whang, 1987), and the 
affordance fit cannot be reduced to only a single parameter. For 
example, Hospodar et al. (2023) showed that success at throwing 
beanbags and walking through doorways depends on both threshold and 
slope parameters; comparisons based only on doorway width are 
necessarily imprecise. By analyzing performance level rather than 
doorway width, we can better equate performance (and thus risk) across 
participants and tasks, and better yet, the focus is on performance rather 
than one of its many constituent dimensions, such as doorway width. 
That is, tests of risk perception should be based on performance level in 
combination with the reward/penalty that results from success/failure, 
not on doorway width or any other environmental dimension.

4.2. Performance variability and cross-task comparisons

The importance of performance variability in determining risk level 
means that comparisons among tasks and studies is more fraught than 
previously acknowledged. For example, Yasuda et al. (2014) and Fran-
chak and Somoano (2018) separately tested whether practice walking 
through doorways varying in width improves subsequent risk percep-
tion. Practice trials in each study were based on metric doorway size 
relative to threshold without accounting for performance variability. 
Thus, the actual performance level of those practice trials (which de-
pends on each participant's performance variability) was unknown and 
might not have been equivalent. Consequently, the accuracy of partici-
pants' perceptual judgments may have differed due to unequal practice, 
but readers would have no way of knowing that.

We suggest that studying risk perception in the language of perfor-
mance level (% success) is the way forward to allow researchers to 
compare participants, tasks, sessions, and experiments. The advantage 
of performance level is that it can describe a wide range of motor tasks 
using a single metric that abstracts across the multiple actor- 
environment dimensions that influence performance. Not all metrics 
have these properties. For example, “pi numbers” relate an environ-
mental dimension (e.g., doorway width) to a body dimension (e.g., 
shoulder width) as a ratio (Warren & Whang, 1987). However, pi 
numbers can only account for two dimensions, one about the actor and 
one about the environment, when other factors might matter (e.g., 
walking speed, lateral sway of the shoulders). Moreover, pi numbers 
from one task are not comparable to pi numbers from another task. 
Whereas the pi number for walking through doorways is 1.3 when 
relating shoulder width to doorway width, the pi number for walking 
under barriers is 1.00 to 1.04 when relating participant height to barrier 
height (Franchak et al., 2012; Stefanucci & Geuss, 2010; van der Meer, 
1997). Pi numbers do not equate success rates across tasks like doorway 
passage and overhead clearance, but performance level in % success 
allows for meaningful comparisons. Moreover, pi numbers may not be 
comparable across age groups (older and younger adults) or skill levels 
(gymnasts and regular folk), even within the same task (Konczak et al., 
1992). But if performance were measured in % success units, perfor-
mance levels could be equated.

However, these advantages can only be realized if researchers can 
accurately model performance. Prior work showed that a psychophysi-
cal curve fitting approach with threshold and slope parameters provides 
advantages beyond approximating performance into a single critical 
point, such as the smallest possible doorway (Franchak, Adolph, 2014a). 
Here, we extend that work to show that researchers have different op-
tions for estimating thresholds and slopes depending on the amount of 
data. In situations where many successful and unsuccessful trials can be 

collected around the threshold, researchers can fit individual psycho-
metric functions to each participant's data (as in Fig. 2A). However, in 
situations where such trials are too costly or few, researchers are better 
off fitting individual thresholds and pooling data across participants to 
estimate a pooled slope (as in Fig. 4A). Bootstrapped refitting procedures 
to estimate confidence intervals (as in Fig. 2B) for each parameter can 
help researchers to understand the precision of their estimates to guide 
their decisions about the quality of individual versus pooled slopes 
(Wichmann, Hill, 2001b). User-friendly packages for psychophysical 
curve fitting, such as quickpsy in R (Linares & López-Moliner, 2016), 
make these approaches tractable for researchers who are unfamiliar 
with psychophysical methods. Our shared analysis scripts (DOI: 10.1760 
5/OSF.IO/WNCBK) describe each procedure reported in our results.

5. Conclusions

Risk perception is a central phenomenon in studies of motor devel-
opment (Adolph, 2019), injury prevention (Plumert & Kearney, 2014), 
and decision making (Dekker & Nardini, 2016). In the laboratory, risk 
levels in computerized tasks are dictated by the researcher who pro-
grammed the experiment (Levy et al., 2010). But physical risk levels in 
most real-world tasks are beyond the researcher's control because motor 
performance depends on body-environment relations (Gibson, 1979). 
Researchers cannot yet model those factors a priori—even in tasks as 
simple as throwing a bean bag or walking through a doorway. So, we 
must measure the motor performance of a particular person in a 
particular task. Improvements in estimating motor performance, such as 
the pooled slope estimate presented here, allow for better comparisons 
of risk across people, tasks, sessions, and studies. Such comparisons 
allow researchers to better understand how motor performance interacts 
with penalties and rewards as people weigh their motor decisions, and to 
test safety interventions based on risk perception and physical risk.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.actpsy.2025.104703.
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Linares, D., & López-Moliner, J. (2016). quickpsy: An R package to fit psychometric 
functions for multiple groups. The R Journal, 8(1), 122–131.

O’Neal, E. E., Plumert, J. M., McClure, L. A., & Schwebel, D. C. (2016). The role of body 
mass index in child pedestrian injury risk. Accident Analysis and Prevention, 90, 
29–35.

Plumert, J. M. (1995). Relations between children’s overestimation of their physical 
abilities and accident proneness. Developmental Psychology, 31, 866–876.

Plumert, J. M., & Kearney, J. K. (2014). How do children perceive and act on dynamic 
affordances in crossing traffic-filled roads? Child Development Perspectives, 8, 
207–212.

Plumert, J. M., Kearney, J. K., & Cremer, J. F. (2007). Children’s road crossing: A 
window into perceptual-motor development. Current Directions in Psychological 
Science, 16, 255–258.

Rachwani, J., Herzberg, O., Kaplan, B. E., Comalli, D. M., O’Grady, S., & Adolph, K. E. 
(2022). Flexibility in aciton: Development of locomotion under overhead barriers. 
Developmental Psychology, 58, 807–820.

Snapp-Childs, W., & Bingham, G. P. (2009). The affordance of barrier crossing in young 
children exhibits dynamic, not geometric, similarity. Experimental Brain Research, 
198, 527–533.

Stefanucci, J. K., & Geuss, M. N. (2010). Duck! Scaling the height of a horizontal barrier 
to body height.  Attention, Perception, Psychophysics, 72, 1338–1349.

Strother, L., & Kubovy, M. (2006). On the surprising salience of curvature in grouping by 
proximity. Journal of Experimental Psychology: Human Perception and Performance, 32 
(2), 226–234.

Tamis-LeMonda, C. S., Adolph, K. E., Lobo, S. A., Karasik, L. B., Dimitropoulou, K. A., & 
Ishak, S. (2008). When infants take mothers’ advice: 18-month-olds integrate 
perceptual and social information to guide motor action. Developmental Psychology, 
44, 734–746.

van der Meer, A. L. H. (1997). Visual guidance of passing under a barrier. Early 
Development and Parenting, 6, 149–157.

Wagman, J. B., & Malek, E. A. (2007). Perception of whether an object can be carried 
through an aperture depends on anticipated speed. Experimental Brain Research, 54 
(1), 54–61.

Warren, W. H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal 
of Experimental Psychology: Human Perception and Performance, 10, 683–703.

Warren, W. H., & Whang, S. (1987). Visual guidance of walking through apertures: Body- 
scaled information for affordances. Journal of Experimental Psychology: Human 
Perception and Performance, 13, 371–383.

Wichmann, F. A., & Hill, N. J. (2001a). The psychometric function: I. Fitting, sampling, 
and goodness of fit. Perception & Psychophysics, 63, 1293–1313.

Wichmann, F. A., & Hill, N. J. (2001b). The psychometric function: II. Bootstrap-based 
confidence intervals and sampling. Perception & Psychophysics, 63, 1314–1329.

Wilmut, K., & Barnett, A. L. (2011). Locomotor behavior of children while navigating 
through apertures. Experimental Brain Research, 210, 185–194.

Yasuda, M., Wagman, J. B., & HIguchi, T.. (2014). Can perception of aperture passability 
be improved immediately after practice in actual passage? Dissociation between 
walking and wheelchair use. Experimental Brain Research, 232, 753–764.

J.M. Franchak et al.                                                                                                                                                                                                                            

https://databrary.org/volume/1448
https://doi.org/10.17605/OSF.IO/WNCBK
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0005
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0005
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0010
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0010
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0015
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0015
https://doi.org/10.1007/s00221-013-3550-0
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0025
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0025
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0025
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0030
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0030
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0035
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0035
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0035
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0040
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0040
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0045
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0045
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0045
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0050
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0050
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0055
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0055
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0060
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0060
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0060
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0065
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0065
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0065
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0070
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0070
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0070
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0075
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0075
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0075
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0080
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0080
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0080
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0085
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0090
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0090
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0090
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0095
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0095
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0095
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0100
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0100
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0100
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0105
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0105
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0105
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0110
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0110
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0115
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0115
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0115
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0115
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0120
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0120
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0125
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0125
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0125
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0130
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0130
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0130
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0135
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0135
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0135
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0140
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0140
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0145
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0145
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0145
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0150
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0150
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0155
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0155
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0155
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0160
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0160
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0160
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0165
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0165
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0165
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0170
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0170
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0170
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0175
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0175
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0180
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0180
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0180
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0185
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0185
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0185
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0185
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0190
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0190
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0195
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0195
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0195
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0200
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0200
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0205
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0205
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0205
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0210
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0210
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0215
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0215
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0220
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0220
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0225
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0225
http://refhub.elsevier.com/S0001-6918(25)00016-2/rf0225

	Risky actions: Why and how to estimate variability in motor performance
	1 Introduction
	1.1 A psychophysical approach to motor performance
	1.2 The importance of accurate estimates of performance variability for comparing risk across tasks, people, and sessions
	1.3 Challenges in estimating performance variability
	1.4 Current study

	2 Method
	2.1 Procedure for throwing/walking dataset
	2.2 Individual threshold and slope estimates in the throwing/walking dataset

	3 Results
	3.1 Task-specific differences in performance variability lead to differences in accuracy of slope estimates
	3.2 Misrepresented performance variability leads to large errors in estimates of performance level
	3.3 Pooled slopes provide acceptable estimates of performance level
	3.4 Pooled slopes provide better estimates of performance than individual slope estimates for small numbers of imbalanced t ...

	4 Discussion
	4.1 From motor performance to risk perception
	4.2 Performance variability and cross-task comparisons

	5 Conclusions
	Permission to reproduce materials from other sources
	CRediT authorship contribution statement
	Ethics approval statement
	Funding
	Declaration of competing interest
	Data availability
	References


